笛卡儿叶形线是一个代数曲线,首先由笛卡儿在1638年提出。
直角坐标系:x^3+y^3=3axy极坐标系:r=(3asin(θ)cos(θ))/(sin(θ)^3+cos(θ)^3)
参数方程:x=3at/(1+t^3)y=3at^2/(1+t^3)其中, t=tan(θ)相关软件参见:,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815
vertices = 1000t = from 0 to (PI)a = rand2(0.1, 10.0)s = sin(t)c = cos(t)p = a*3*s*c/ (c^3 + s^3)x = p*sin(t)y = p*cos(t)x = limit(x, -25, 25)y = limit(y, -25, 25)
笛卡儿叶形面
vertices = D1:1000 D2:100u = from 0 to (PI) D1v = from 0.1 to (15.0) D2s = sin(u)c = cos(u)p = v*3*s*c/ (c^3 + s^3)x = p*sin(u)y = p*cos(u)x = limit(x, -25, 25)y = limit(y, -25, 25)
有一种与 笛卡儿叶形线相似的曲线为:
三等分曲线(trisectrix)
vertices = 1000t = from (-PI) to (PI)a = 5p = a*(1+2*cos(2*t))/cos(t)x = p*sin(t)y = p*cos(t)x = limit(x, -50, 50)y = limit(y, -50, 50)